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Abstract—Established safety frameworks such as
Hamilton-Jacobi Reachability and Control Barrier Func-
tions provide powerful formal guarantees for performance
and safety of dynamical systems. However, they tradition-
ally assume perfect knowledge of the state and determin-
istic state transitions. In the case that there is process or
measurement uncertainty within the system, these formal
guarantees are compromised.

To address this limitation, this project leverages a Nested
Monte Carlo method from stochastic Model Predictive
Control. This approach selects the best-performing state
estimate from candidates generated by a particle filter
by optimizing a prescribed finite-horizon cost function
while satisfying state and input constraints. The state
estimate that minimizes the cost is then used in Certainty
Equivalence feedback control. When combined with a
Quadratic Program-based Control Barrier Function safety
filter, this heuristic approach to stochastic optimal control
provides a robust state estimate, improving the safety
of deterministic controllers in stochastic settings while
preserving performance objectives.

Computational examples are included to demonstrate
the performance of the State Selection Algorithm applied
to different sets of dynamics and controllers, and oppor-
tunities for future work are discussed.

Index Terms—Stochastic Optimal Control, Stochastic
MPC, State Estimation, Particle Filtering, Reachability,
Control Barrier Functions

I. INTRODUCTION

With the widespread growth and adoption of au-
tonomous systems in everyday life, the need for advances
in performance and safety becomes essential. Although
liveness has been at the forefront of control, guarantees
for safety grow increasingly central to the success of
autonomous systems, which must tackle increasingly
complex environments, especially in safety-critical sce-
narios such as autonomous driving and collision avoid-
ance. Safe control algorithms such as Hamilton-Jacobi
Reachability [1] and Control Barrier Functions [2] pro-
vide powerful formal guarantees regarding the safety
of dynamical systems, but they traditionally assume
deterministic state transitions and measurements, which

means that there are no random disturbances and there
is no difference between open-loop and closed-loop
trajectories. Evidently, the real world is not deterministic,
so making this assumption is a rarely applicable luxury.
In the event that there is process or measurement uncer-
tainty within the system, the equivalence between open-
loop and closed-loop control disappears, and the formal
safety guarantees of Hamilton-Jacobi Reachability and
Control Barrier Functions are undermined if not properly
addressed.

On the other hand, the addition of uncertainty or
partial observability into the formulation dips into the
field of stochastic optimal control, which can quickly
become intractable [3]. Combined with the already re-
strictive computational complexities of some techniques
for safe control, there exists proper motivation to look
for a compromise between complete optimality and the
convenience of a sub-optimal, heuristic approach to
stochastic optimal control.

Toward this end, previous work in [4] presented a
method for stochastic Model Predictive Control which
attempts to find this middle ground between complete
optimality and tractability in stochastic systems through
Monte Carlo sampling. Monte Carlo sampling-based
methods are widely used in stochastic optimization
because they enable numerical approximations without
requiring closed-form solutions, and they are particularly
useful for approximating models that are difficult to eval-
uate. A survey of Monte Carlo sampling for estimation
and optimization is given in [5].

Using techniques from nested Monte Carlo, [3]
demonstrates an approach to stochastic Model Predictive
Control that selects the best performing state among
candidates generated from a particle filter for use in
Certainty Equivalence feedback control. The best state
is found by minimizing a prescribed cost function over
the set of state estimates while also satisfying state
and input constraints by sampling control sequences
and their corresponding open-loop trajectories. Through
this State Selection Algorithm, we can influence the
behavior of the particle density towards some control
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objective through the selection of the state rather than
the selection of the control signal itself. By selecting
the state estimate whose sampled trajectories minimize
a performance function and also satisfies state and input
constraints, this method of state estimation enforces
safety as a hard constraint while also providing room
to optimize a given performance metric.

In this project, we aim to combine the State Selec-
tion Algorithm with methods for safe control such as
Hamilton-Jacobi reachability and control barrier func-
tions to improve the performance and safety of tradi-
tionally deterministic safety algorithms when applied
to stochastic settings. The combination of these two
techniques would be an approach to stochastic optimal
control that explores the compromise between complete
optimality and tractable, heuristic techniques while in-
corporating an additional layer of robustness, and it is
a contribution to the study of state estimation within
control barrier functions and reachability.

II. PROBLEM STATEMENT

Fig. 1: Problem Formulation with SSA and a safe
controller

For this project, we will first demonstrate the State
Selection Algorithm using a simple numerical example.
Then, we combine the SSA with a Control Barrier
Function problem. Specifically, we analyze an obstacle
avoidance problem for a double integrator where the
control input is acceleration in the x and y directions.
In a deterministic setting, a Quadratic Programming -
Control Barrier Function safety filter provides a formal
guarantee for safety, but on top of this CBF problem
we add random disturbance and measurement noise,
which eliminates the guarantees for safety. Now that
the problem is in a stochastic setting, we produce a
probability distribution of the state with a particle filter.
Using this particle density, we compare the performance

and safety of a nominal conditional-mean-based Cer-
tainty Equivalence state estimate and the State Selection
Algorithm.

A. State Selection Algorithm Formulation
Consider the following dynamical system:
I. Discrete-time state dynamics

xk+1 = f(xk, uk, wk) (1)

yk = h(xk, vk)

where state xk ∈ Rn, control input uk ∈ Rm,
disturbance wk ∈ Rd, and noise vk ∈ Re

II. Stochastic disturbance process, {wk}, assumed to
be independently and identically distributed (i.i.d)
possessing known density W . The state x0 is
independent of wk for all k.

III. State and input constraint sets, X and U, respec-
tively

IV. Nominal full-state-feedback control law uk =
κ(xk)

V. An inital state x0-density p0, provided as a col-
lection of particles Ξ = {ξi0 ∈ Rn, i = 1, ..., L}

VI. An N -stage finite-horizon trajectory cost function
J =

∑N
k=1 ℓk(xk, uk)

The goal of the State Selection Algorithm is
to select a candidate state value, x⋆0 from the ini-
tial state density which is probabilistically feasible
(Monte Carlo language for “safe” ) and favorably
influences the average trajectory cost, J , over the set
of particles. As displayed in Figure 1, this candidate
state is fed into a nominal controller, and the control
value is applied to the system.

In this project, the discrete time dynamics are
of a 4 dimensional double integrator with an output
that detects position, each with additive Gaussian
noise,

xk =


px,k
py,k
vx,k
vy,k

 , yk =

[
px,k
py,k

]
, uk =

[
v̇x,k
v̇y,k

]
(2)

and the running-cost function is an LQR based
quadratic cost

ℓ(x, u) = x′Qx+ u′Ru (3)

where Q = I and R = 2I .

B. Control Barrier Function Formulation
The nominal controller for this project is a

Quadratic Programming-Control Barrier Function
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derived safety filter, which unifies performance
objectives with safety requirements. We give an
abridged definition of a control barrier function
below with a more rigorous formulation available
in [6].

Consider a safe set C defined as the superlevel
set of a continuously differentiable function h :
D ⊂ Rn −→ R.

C = {x ∈ D ⊂ Rn : h(x) ≥ 0} (4)

Then h is a control barrier function if there exists
an extended class K∞ function α such that for a
control system ẋ = f(x) + g(x)u,

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)) (5)

for all x ∈ D [6].
Other common alternative representations of the

safety constraint described by (5) include

ḣ(x) + α(h(x)) ≥ 0

ḧ(x) + c1ḣ(x) + c2h(x) ≥ 0 (6)

depending on the relative degree between the
control input and h. Any control value that satisfies
(5) or (6) guarantees invariance within the safe set
C.

To modify a given feedback controller unom =
κ(x) with safety guarantees, we can formulate a
Quadratic Program based controller:

usafe(x) = arg min
u∈Rm

||u− unom(x)||2 (7)

s.t. ḧ(x) + c1ḣ(x) + c2h(x) ≥ 0

This QP step incorporates both hard safety con-
straints and performance objectives into the con-
troller.

Fig. 2: Deterministic QP-CBF obstacle avoidance

For this project, we define a control barrier
function h(x) that encodes a safe set C and unsafe
set Cc as

h(x) = distance(x, robs)− dmin (8)

where robs is the position of the center of a circular
obstacle, and dmin is the radius of the obstacle.
When combined with the State Selection Algorithm,
this problem’s unsafe set Cc is equivalent to the state
constraint set X.

Additionally, the nominal control law is defined
as a PD controller that stabilizes the double inte-
grator towards the origin.

u(x) = −Kd[vx, vy]
T −Kp[px, py]

T (9)

III. TECHNICAL APPROACH

The structure of a combined State Selection Algorithm
and QP-CBF, which is briefly expressed in Figure 1, is
outlined as follows:

1) Define initial state density Ξ0

2) Perform the Certainty Equivalence step using the
State Selection Algorithm, narrowing the probabil-
ity distribution to a single particle x⋆

3) use x⋆ in feedback controller, usafe = κ(x⋆)
4) Propagate the distribution using the state transition

model
5) Update the distribution using a particle filter

By keeping to this general structure, various types of
feedback control, particle filtering, and cost function
minimization can be used, making this SSA technique
modular and adaptable. Next, a more thorough explana-
tion of the State Selection Algorithm, QP-Control Barrier
Function, and Particle Filtering steps is provided.

Algorithm 1 Outer loop of SSA-QP-CBF
Input: State density Ξ, particle filter (PF), state selection
algorithm (SSA), state transition model f(x, u, w), QP-
CBF-based controller usafe = κ(x)
Initialization: initial state density Ξ0

Output: propagated state density
1: for k = 1, 2, . . . do
2: Perform SSA; x⋆ ← argminJ(x)
3: Compute control value; u← κ(x⋆)
4: Propagate Ξk; xk+1 ← f(xk, uk, wk)
5: Update likelihoods; p0 ← P (y|x)
6: if Particle Depletion then
7: Resample
8: end if
9: end for
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A. State Selection Algorithm
Say we start with an initial state density Ξ0 with

L number of particles. The algorithm proceeds as
follows:

1. Select a Monte Carlo sample number M and
statistical feasibility tolerance α ∈ [0, ϵ), which
are parameters of the algorithm

2. For each i ∈ {1, 2, ..., L}, choose x′0 = ξi ∈ Ξ.
i) sample from W and Ξ independent realiza-

tions of noise sequences w′
j and w′′

j , as well
as initial states x′′0,j

ii) compute the N -long κ-closed-loop state se-
quence from x′0.

x′k+1,j = f(x′k,j , κ(x
′
k,j), w

′
k,j) (10)

including the corresponding closed-loop con-
trol sequence {κ(x′k,j)}

N−1
k=0

iii) For each j ∈ {1, ...,M}, compute the open-
loop-controlled state sequence from sampled
states x′′0,j ,

x′′k+1,j = f(x′′k,j , κ(x
′
k,j), w

′′
k,j) (11)

iv) Compute for each k the sample-average
closed-loop control violation rate,

β̂k(x
′
0) =

1

M

M∑
j=1

1(κ(x′′k,j) ∈ U). (12)

v) Compute for each k the sample-average open-
loop-controlled state violation rate

λ̂k(x
′
0) =

1

M

M∑
j=1

1(x′′k,j ∈ X). (13)

vi) If β̂k(x
′
0) ≥ 1 − α and λ̂k(x

′
0) ≥ 1 − α for

all k, then declare this state x′0 to be feasible
vii) If x′0 is feasible, calculate the sample-average

performance

JM
c (x′0) =

1

M

M∑
j=1

N∑
k=0

lk(x
′′
k,j , κ(x

′
k,j)).

(14)
3. Pick x⋆0 to be the feasible x′0 minimizing JM

c (·)

x⋆0 = arg min
x′
0∈Xϵ

0

Jc(x
′
0) (15)

In summary, for each particle x′0 ∈ Ξ, we generate
M trajectories using the particle’s closed-loop con-
trol sequence {uk,j = κ(x′k,j)} and take the sample
averages of the open-loop cost of the closed-loop
sequence. Then, the selected state is the state of
lowest cost that also belongs to the feasible set Xϵ.

Algorithm 2 State Selection Algorithm
Input: state density Ξ, state transition model f(x, u, w),
running-cost function l(x, u), nominal controller u =
κ(x)
Output: candidate state x⋆

1: for i = 1, 2, . . . , L do
2: calculate x′ sequence, x′k+1 ← f(x′k, κ(x

′
k), w

′
k)

3: record control sequence, u← κ(x′k)
4: sample M number of states from Ξ, x′′k
5: for j = 1, 2, . . . ,M do
6: calculate x′′ sequence using u

x′′k+1 ← f(x′′k, κ(x
′
k), w

′′
k)

7: α′ ← checkViolation(x′′k)
8: end for
9: calculate average cost of x′′ sequences,

J(x′k)←
1

M

∑∑
l(x′′k, uk)

10: if α′ < α then
11: add x′k to feasible set Xϵ, Xϵ ← Xϵ ∪ {x′}
12: end if
13: end for

return x⋆ ← argminJ(x′)

The State Selection Algorithm as described
above was recreated from scratch as part of a Julia
program with a particle density size L = 400 and a
Monte Carlo sample number M = 135. Initially, a
basic numerical example was used to demonstrate
the capabilities of the SSA by itself. Once this
numerical example was established, the SSA was
combined with the QP-CBF problem.

B. Control Barrier Function
Once the candidate state x⋆ is found, it is used

in a nominal feedback controller u = κ(x). For
this project, the feedback controller is the QP-CBF-
based safety filter defined in equation (7).

Because the control input enters the dynam-
ics further down the derivative chain compared to
position-based control barrier function, the higher
order CBF constraint defined in (6) is used. Since
these dynamics are affine in control, the CBF con-
straint can be restructured into the form Au ≥ b,
and the control law turns into a quadratic pro-
gramming optimization problem. This optimization
problem is solved using Julia’s JuMP optimization
package, resulting in a safety-filtered control value
that is used to propagate the probability distribution.
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Fig. 3: Initial numerical example of the State Selection
Algorithm in Julia

C. Particle Filter
Once the distribution goes through the state

transition, a measurement is taken of the simulated
true state (including additive Gaussian noise) for
use in a bootstrap particle filtering update.

This particle filter step is also implemented from
scratch in Julia, which goes as follows:

1. Propagate the particle density

xk+1,i = f(xk,i, uk, wk) (16)

2. Propagate the simulated true state and take mea-
surement, including additive Gaussian noise

yk+1 = g(xk+1, vk+1) (17)

3. Calculate the weights associated with each parti-
cles using the likelihood of the observation,

wk+1,i = wk,i p(yk+1|xk+1,i) (18)

then normalize

w
(i)
k+1 =

w
(i)
k+1∑L

i=1w
(i)
k+1

(19)

4. If the density size is below a certain threshold,
resample particles and reset weights to 1.

Now that there is an updated particle density, the
process starts over, and the Certainty Equivalence step
with SSA can be performed again.

IV. RESULTS

Fig. 4: Comparison of violation rates for initial numerical
example

A. Safety and Performance
Initially, the State Selection Algorithm was

demonstrated on a simple numerical example where
a particle density moved around an L-shaped obsta-
cle, as shown in Figure 3, resulting in a drastically
lower state constraint violation rate compared to
using Certainty Equivalence with the mean state
value.

Fig. 5: QP-CBF obstacle avoidance with no SSA

Next, the SSA was applied onto the QP-CBF ob-
stacle avoidance problem. In the displayed figures,
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the blue dots highlight the mean state value in the
case without SSA and the minimum cost feasible
state in the case with SSA. In the deterministic, zero
process noise case, the QP-CBF safety filter for-
mally guarantees that the mean state will not enter
the unsafe set. Since there are perturbations due to
process noise, this guarantee no longer applies, but
the safety-filter works well to keep the mean state
away from the obstacle as much as possible. How-
ever, much of the probability distribution besides
the mean state value enters the unsafe set, which
can be dangerous considering that the distribution
represents likely estimates of the true state of the
system. This particularly highlights the need for a
robust method of state estimation for deterministic
safety controllers.

Fig. 6: QP-CBF obstacle avoidance with SSA

Alternatively, the QP-CBF safety-filter com-
bined with the State Selection Algorithm results
in a more conservative path around the obstacle.
When the particle density is closer to the unsafe
set, the candidate state tends to be a state closer to
the obstacle, as state estimates close to the obstacle
result in more conservative control actions, which
lead to lower constraint violation rates. Conversely,
as the distribution moves away from the obstacle,
the candidate state aligns closely with the mean
state because there is more room to optimize over
the cost function (3).

Notably, a common problem with control barrier
function techniques is the tendency to get stuck
when facing a circular obstacle head-on, specifically
in the deterministic case. This same issue can be
recreated in this problem setup where the particle
density has trouble moving around the obstacle if it
starts near this CBF “dead-zone”. Interestingly, the
QP-CBF with SSA can often keep away from the

Fig. 7: QP-CBF constraint violation rate comparison

obstacle more effectively than without SSA in this
situation.

The running cost of the two scenarios are dis-
played in Figure 8. In this instance, the cost of SSA
is similar to the cost of Certainty Equivalence with-
out SSA. As stated in [3], it should be guaranteed
that the cost of the selected state x⋆ is less than
or equal to the cost of density’s sample average
as an immediate consequence of the minimization
over x′0. However, this only applies if the sample
average is a feasible state. In this obstacle avoidance
problem, the mean state estimate is often not a
feasible state, as demonstrated with the high state
violation rates shown in Figure 5 and Figure 7, so
the State Selection Algorithm chooses a higher cost
state estimate in order to satisfy safety constraints.
Overall, the SSA results in a similar performance
measure as quantified by the LQR cost metric, but
it results in considerably higher safety.

Fig. 8: Running cost comparison
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B. Computation
This additional measure of safety comes with the

downside of a higher computational load. Compared
to the mean-based Certainty Equivalence method,
the State Selection Algorithm requires the addi-
tional calculation of L∗M trajectories, each N steps
long, which is expected with a nested Monte Carlo
structure. Like many Monte Carlo methods, each
simulation is completely independent, so theoreti-
cally the entire SSA can be completely parallelized
with GPU programming and is left as future work.

V. CONCLUSION

In this project, we proposed and demonstrated a
method for robust state estimation to improve the safety
of deterministic safe control algorithms within stochastic
environments. Leveraging techniques from Monte Carlo
and stochastic MPC, we can sample simulated open-loop
trajectories associated with the state estimates provided
by a particle filter and minimize a cost function over
the set of feasible states. This showed improvements
to safety in comparison to a nominal mean-state-value-
based Certainty Equivalence feedback method when
applied to a Quadratic-Programming Control Barrier
Function obstacle avoidance problem.

Due to the modular nature of the State Selection Al-
gorithm, various controllers, cost functions, and particle
filters can be used to fit different objectives. For instance,
there is work being done to use the State Selection Algo-
rithm with an Extended Kalman Filter as the dynamical
system where the cost function to be minimized involves
the mean and variances, which can result in a better state
estimate for nonlinear observation models. Other future
work includes using neural network controllers to speed
up computation, using an Extended Kalman Filter for
the particle filter, tackling higher order control barrier
functions, and implementing GPU parallelization.
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